login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337144
n is the a(n)-th positive integer which takes its number of steps to reach 1 in the '3x+1' problem.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 3, 4, 1, 1, 1, 2, 3, 2, 3, 1, 2, 2, 1, 3, 2, 4, 5, 1, 2, 2, 1, 2, 3, 2, 3, 4, 1, 1, 1, 2, 5, 3, 4, 1, 2, 3, 5, 1, 2, 4, 5, 1, 2
OFFSET
1,13
FORMULA
Ordinal transform of A006577.
a(n) = |{ j in {1..n} : A006577(j) = A006577(n) }|.
EXAMPLE
a(13) = 2 because A006577(13) = A006577(12) = 9 != A006577(j) for j < 12.
MAPLE
collatz:= proc(n) option remember; `if`(n=1, 0,
1 + collatz(`if`(n::even, n/2, 3*n+1)))
end:
b:= proc() 0 end:
a:= proc(n) option remember; local t;
`if`(n=1, 0, a(n-1));
t:= collatz(n); b(t):= b(t)+1
end:
seq(a(n), n=1..120);
MATHEMATICA
collatz[n_] := collatz[n] = If[n == 1, 0,
1 + collatz[If[EvenQ[n], n/2, 3n+1]]];
b[_] = 0;
a[n_] := a[n] = Module[{t},
If[n == 1, 0, a[n-1]];
t = collatz[n]; b[t] = b[t]+1];
Array[a, 120] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A333849 A140816 A029433 * A088203 A205649 A376306
KEYWORD
nonn,look
AUTHOR
Alois P. Heinz, Jan 27 2021
STATUS
approved