OFFSET
0,5
LINKS
Maria Juliana Mantilla Morales, Segundo trabajo matemática computacional (in Spanish).
Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,5,8,-2,-4,-1).
FORMULA
a(n) = (((1+sqrt(5))/2)^n)*(-3*sqrt(5)/125 + ((135+13*sqrt(5))/500)*n + ((-45-9*sqrt(5))/250)*n^2 + ((3+sqrt(5))/100)*n^3) + (((1-sqrt(5))/2)^n)*(3*sqrt(5)/125 + ((135-13*sqrt(5))/500)*n + ((-45+9*sqrt(5))/250)*n^2 + ((3-sqrt(5))/100)*n^3).
G.f.: 3*x^4*(x+1)^2/(x^2+x-1)^4. - Alois P. Heinz, Sep 14 2020
E.g.f.: (cosh(x/2) + sinh(x/2))*(5*x*(6 - 15*x + 11*x^2)*cosh(sqrt(5)*x/2) + sqrt(5)*(-12 + 30*x - 27*x^2 + 25*x^3)*sinh(sqrt(5)*x/2))/250. - Stefano Spezia, Sep 16 2020
a(n) = (n-3)*((n^2+3*n+2)*F(n) + 3*(n-3)*n*F(n+1))/50, where F(n) is the n-th Fibonacci number. - Vaclav Kotesovec, Sep 16 2020
EXAMPLE
a(4) = 3: 1122, 1221, 2211.
a(5) = 18: 01122, 10122, 11022, 21122, 12122, 02211, 22011, 22101, 22110, 22112, 22121, 01221, 10221, 12201, 12210, 21221, 12212, 11220.
The word 11222 is not included because the subword 22 occurs more than once (exactly twice).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Maria Juliana Mantilla Morales, Sep 14 2020
EXTENSIONS
a(16)-a(32) from Alois P. Heinz, Sep 14 2020
STATUS
approved