login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107583
a(n) = 3^n - 3*n.
11
1, 0, 3, 18, 69, 228, 711, 2166, 6537, 19656, 59019, 177114, 531405, 1594284, 4782927, 14348862, 43046673, 129140112, 387420435, 1162261410, 3486784341, 10460353140, 31381059543, 94143178758, 282429536409, 847288609368, 2541865828251, 7625597484906, 22876792454877
OFFSET
0,3
COMMENTS
a(n) is the number k such that the number m with n 3's and k 1's has digit product = digit sum = 3^n.
FORMULA
From Elmo R. Oliveira, Sep 09 2024: (Start)
G.f.: (1 - 5*x + 10*x^2)/((1 - 3*x)*(1 - x)^2).
E.g.f.: exp(x)*(exp(2*x) - 3*x).
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3) for n > 2. (End)
EXAMPLE
Corresponding numbers m are 1, 3, 11133, 111111111111111111333, ...
MATHEMATICA
Table[3^m-3*m, {m, 0, 20}]
PROG
(Magma) [3^n-3*n: n in [0..30]]; // Vincenzo Librandi, Oct 22 2011
(PARI) a(n)=3^n-3*n \\ Charles R Greathouse IV, Sep 08 2012
CROSSREFS
Sequence in context: A026576 A048899 A337142 * A373651 A157535 A373065
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, May 16 2005
EXTENSIONS
Corrected by Charles R Greathouse IV, Sep 08 2012
STATUS
approved