

A107584


a(n) = 4^n  4*n.


10



1, 0, 8, 52, 240, 1004, 4072, 16356, 65504, 262108, 1048536, 4194260, 16777168, 67108812, 268435400, 1073741764, 4294967232, 17179869116, 68719476664, 274877906868, 1099511627696, 4398046511020, 17592186044328, 70368744177572, 281474976710560, 1125899906842524
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Numbers a(n)=k such that number m with n 4's and k 1's has digit product = digit sum = 4^n.


LINKS



FORMULA

a(0)=1, a(1)=0, a(2)=8, a(n) = 6*a(n1)  9*a(n2) + 4*a(n3).  Harvey P. Dale, Oct 21 2011
G.f.: (17*x^2+6*x1)/((x1)^2*(4 x1)).  Harvey P. Dale, Oct 21 2011


EXAMPLE

Corresponding numbers m are 1, 4, 1111111144, ...


MATHEMATICA

Table[4^m4*m, {m, 0, 20}]
LinearRecurrence[{6, 9, 4}, {1, 0, 8}, 30] (* Harvey P. Dale, Oct 21 2011 *)


PROG

(Python)


CROSSREFS



KEYWORD

nonn,easy,changed


AUTHOR



EXTENSIONS



STATUS

approved



