login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107584
a(n) = 4^n - 4*n.
10
1, 0, 8, 52, 240, 1004, 4072, 16356, 65504, 262108, 1048536, 4194260, 16777168, 67108812, 268435400, 1073741764, 4294967232, 17179869116, 68719476664, 274877906868, 1099511627696, 4398046511020, 17592186044328, 70368744177572, 281474976710560, 1125899906842524
OFFSET
0,3
COMMENTS
Numbers a(n) = k such that number m with n 4's and k 1's has digit product = digit sum = 4^n.
FORMULA
From Harvey P. Dale, Oct 21 2011: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) with a(0)=1, a(1)=0, and a(2)=8.
G.f.: (-17*x^2+6*x-1)/((x-1)^2*(4*x-1)). (End)
E.g.f.: exp(x)*(exp(3*x) - 4*x). - Elmo R. Oliveira, Sep 10 2024
EXAMPLE
Corresponding numbers m are 1, 4, 1111111144, ...
MATHEMATICA
Table[4^m-4*m, {m, 0, 20}]
LinearRecurrence[{6, -9, 4}, {1, 0, 8}, 30] (* Harvey P. Dale, Oct 21 2011 *)
PROG
(Magma) [(4^n - 4*n): n in [0..25]]; // Vincenzo Librandi, Dec 16 2010
(PARI) a(n)=4^n-4*n \\ Charles R Greathouse IV, Sep 08 2012
(Python)
def A107584(n): return (1<<(n<<1))-(n<<2) # Chai Wah Wu, Nov 29 2023
CROSSREFS
Sequence in context: A026973 A244718 A303509 * A323940 A027225 A073377
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, May 16 2005
EXTENSIONS
More terms from Vincenzo Librandi, Dec 16 2010
Corrected by Charles R Greathouse IV, Sep 08 2012
STATUS
approved