|
|
A107584
|
|
a(n) = 4^n - 4*n.
|
|
10
|
|
|
1, 0, 8, 52, 240, 1004, 4072, 16356, 65504, 262108, 1048536, 4194260, 16777168, 67108812, 268435400, 1073741764, 4294967232, 17179869116, 68719476664, 274877906868, 1099511627696, 4398046511020, 17592186044328, 70368744177572, 281474976710560, 1125899906842524
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Numbers a(n)=k such that number m with n 4's and k 1's has digit product = digit sum = 4^n.
|
|
LINKS
|
|
|
FORMULA
|
a(0)=1, a(1)=0, a(2)=8, a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Harvey P. Dale, Oct 21 2011
G.f.: (-17*x^2+6*x-1)/((x-1)^2*(4 x-1)). - Harvey P. Dale, Oct 21 2011
|
|
EXAMPLE
|
Corresponding numbers m are 1, 4, 1111111144, ...
|
|
MATHEMATICA
|
Table[4^m-4*m, {m, 0, 20}]
LinearRecurrence[{6, -9, 4}, {1, 0, 8}, 30] (* Harvey P. Dale, Oct 21 2011 *)
|
|
PROG
|
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|