login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n - 4*n.
10

%I #27 Sep 10 2024 16:11:18

%S 1,0,8,52,240,1004,4072,16356,65504,262108,1048536,4194260,16777168,

%T 67108812,268435400,1073741764,4294967232,17179869116,68719476664,

%U 274877906868,1099511627696,4398046511020,17592186044328,70368744177572,281474976710560,1125899906842524

%N a(n) = 4^n - 4*n.

%C Numbers a(n) = k such that number m with n 4's and k 1's has digit product = digit sum = 4^n.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,4).

%F From _Harvey P. Dale_, Oct 21 2011: (Start)

%F a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3) with a(0)=1, a(1)=0, and a(2)=8.

%F G.f.: (-17*x^2+6*x-1)/((x-1)^2*(4*x-1)). (End)

%F E.g.f.: exp(x)*(exp(3*x) - 4*x). - _Elmo R. Oliveira_, Sep 10 2024

%e Corresponding numbers m are 1, 4, 1111111144, ...

%t Table[4^m-4*m, {m, 0, 20}]

%t LinearRecurrence[{6,-9,4},{1,0,8},30] (* _Harvey P. Dale_, Oct 21 2011 *)

%o (Magma) [(4^n - 4*n): n in [0..25]]; // _Vincenzo Librandi_, Dec 16 2010

%o (PARI) a(n)=4^n-4*n \\ _Charles R Greathouse IV_, Sep 08 2012

%o (Python)

%o def A107584(n): return (1<<(n<<1))-(n<<2) # _Chai Wah Wu_, Nov 29 2023

%Y Cf. A107583, A107585.

%K nonn,easy

%O 0,3

%A _Zak Seidov_, May 16 2005

%E More terms from _Vincenzo Librandi_, Dec 16 2010

%E Corrected by _Charles R Greathouse IV_, Sep 08 2012