login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107587
Number of Motzkin n-paths with an even number of up steps.
5
1, 1, 1, 1, 3, 11, 31, 71, 155, 379, 1051, 2971, 8053, 21165, 56057, 152881, 425491, 1186227, 3287971, 9102787, 25346457, 71111377, 200425149, 565676629, 1597672277, 4520632981, 12827046181, 36493762501, 104027787451, 296947847203, 848765305351, 2429671858671
OFFSET
0,5
COMMENTS
Binomial transform of 1,0,0,0,2,0,0,0,14,0,0,0,132,... (see A048990). [Corrected by John Keith, May 10 2021]
Number of Motzkin n-paths with only steps F=(1,0) or with an even number of steps U=(1,1) and, accordingly, D=(1,-1) (see A001006). For example, there are 9 Motzkin 4-paths, namely: FFFF, FFUD, FUFD, FUDF, UFFD, UFDF, UUDD, UDFF, and UDUD. We have one path with only F's and two paths with two U's and two D's: UUDD, UDUD. So a(4) = 1 + 2 = 3. - Gennady Eremin, Jan 19 2021
FORMULA
G.f.: A(x) = (sqrt(1 - 2*x + 5*x^2) - sqrt(1 - 2*x - 3*x^2))/(4*x^2).
G.f.: A(x) satisfies A(x) = 1 + x*A(x) + 2*x^2*A(x)*(M(x) - A(x)) where M(x) is the g.f. for Motzkin numbers A001006 (personal conversation with Gennady Eremin). - Sergey Kirgizov, Mar 23 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * ((k+1) mod 2).
a(n) = Sum_{k=0..n} binomial(n, 4*k) * A000108(2*k). - Gennady Eremin, Jan 19 2021
Conjecture: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
Conjecture: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
a(n) = hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/2, 1, 3/2], 16). - Vaclav Kotesovec, Feb 07 2021
G.f.: A(x) satisfies 2*x^2*A(x)^2 + sqrt(1-2*x-3*x^2)*A(x) = 1 (discussion with Sergey Kirgizov). - Gennady Eremin, Mar 30 2021
Sum_{n>=0} 1/a(n) = 4.481162666556140691601309195776026399507565017... - Gennady Eremin, Jul 27 2021
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 155*x^8 + ...
MATHEMATICA
CoefficientList[Series[(Sqrt[1 - 2*x + 5*x^2] - Sqrt[1 - 2*x - 3*x^2])/(4*x^2), {x, 0, 30}], x] (* or *)
Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/2, 1, 3/2}, 16], {n, 0, 30}] (* Vaclav Kotesovec, Feb 07 2021 *)
PROG
(PARI) my(x='x+O('x^35)); Vec((sqrt(1-2*x+5*x^2)-sqrt(1-2*x-3*x^2))/(4*x^2)) \\ Michel Marcus, Jan 20 2021
(Python)
A107587 = [1, 1, 1, 1, 3]
for n in range(5, 801):
A107587.append(((5*n**2+n-3)*A107587[-1]-(10*n**2-16*n+3)*A107587[-2]
+(10*n**2-34*n+27)*A107587[-3]+(11*n-5)*(n-3)*A107587[-4]
-15*(n-3)*(n-4)*A107587[-5])//(n*n+2*n)) # Gennady Eremin, Mar 25 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2005
EXTENSIONS
New name (after email conversations with Gennady Eremin) from Sergey Kirgizov, Mar 25 2021
STATUS
approved