OFFSET
1,2
COMMENTS
a(n)/a(n-1) tends to 2.189207115... = 1 + 2^(1/4) = 1 + A010767.
REFERENCES
E. J. Barbeau, Polynomials, Springer-Verlag NY Inc, 1989, p. 136.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,1).
FORMULA
We use a 4 X 4 matrix corresponding to the characteristic polynomial (x - 1)^4 - 2 = 0 = x^4 - 4x^3 + 6x^2 - 4x - 1 = 0, being [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 4 -6 4]. Let the matrix = M. Perform M^n * [1, 1, 1, 1]. a(n) = the third term from the left, (the other 3 terms being offset members of the series).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)+a(n-4). G.f.: -x*(x^3+5*x^2-x+1)/ (x^4+4*x^3-6*x^2+4*x-1). [Colin Barker, Oct 21 2012]
EXAMPLE
a(4) = 31, since M^4 * [1,1,1,1] = [3, 11, 31, 71].
MATHEMATICA
LinearRecurrence[{4, -6, 4, 1}, {1, 3, 11, 31}, 40] (* Harvey P. Dale, Jul 22 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Mar 28 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
New name using recurrence from Colin Barker, Joerg Arndt, Apr 15 2021
STATUS
approved