login
A093406
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) + a(n-4).
2
1, 3, 11, 31, 71, 145, 289, 601, 1321, 2979, 6683, 14743, 32111, 69697, 151777, 332113, 728689, 1598883, 3503627, 7668079, 16774775, 36704017, 80343361, 175916521, 385196761, 843365379, 1846290395, 4041672871, 8847607391, 19368919297, 42403014721, 92830645537
OFFSET
1,2
COMMENTS
a(n)/a(n-1) tends to 2.189207115... = 1 + 2^(1/4) = 1 + A010767.
REFERENCES
E. J. Barbeau, Polynomials, Springer-Verlag NY Inc, 1989, p. 136.
FORMULA
We use a 4 X 4 matrix corresponding to the characteristic polynomial (x - 1)^4 - 2 = 0 = x^4 - 4x^3 + 6x^2 - 4x - 1 = 0, being [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 4 -6 4]. Let the matrix = M. Perform M^n * [1, 1, 1, 1]. a(n) = the third term from the left, (the other 3 terms being offset members of the series).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)+a(n-4). G.f.: -x*(x^3+5*x^2-x+1)/ (x^4+4*x^3-6*x^2+4*x-1). [Colin Barker, Oct 21 2012]
EXAMPLE
a(4) = 31, since M^4 * [1,1,1,1] = [3, 11, 31, 71].
MATHEMATICA
LinearRecurrence[{4, -6, 4, 1}, {1, 3, 11, 31}, 40] (* Harvey P. Dale, Jul 22 2013 *)
CROSSREFS
Sequence in context: A261148 A071568 A097081 * A376835 A107587 A245931
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Mar 28 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 08 2006
New name using recurrence from Colin Barker, Joerg Arndt, Apr 15 2021
STATUS
approved