login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093407
For p = prime(n), the least k such that p divides the numerator of a sum 1/k + 1/x1 +...+ 1/xm, where x1,...,xm (for any m) are distinct positive integers <= k.
3
3, 2, 3, 4, 3, 4, 5, 4, 5, 5, 5, 6, 6, 7, 5, 7, 7, 5, 6, 7, 7, 8, 7, 7, 6, 8, 7, 5, 8, 8, 6, 7, 5, 8, 8, 9, 8, 8, 9, 7, 8, 9, 9, 9, 9, 8, 7, 7, 8, 8, 10, 8, 8, 9, 10, 9, 8, 8, 9, 9, 8, 7, 9, 8, 10, 7, 9, 9, 10, 10, 8, 9, 8, 10, 9, 10, 7, 9, 9, 11, 9, 9, 9, 10, 10, 9, 10, 7, 9, 9, 11, 10, 9, 11, 11, 11
OFFSET
1,1
COMMENTS
This is a very slow-growing sequence: for n <= 1000, a(n) <= 18. The number a(n) * prime(n) is the least number divisible by prime(n) in sequence A092671.
LINKS
Eric Weisstein's World of Mathematics, Egyptian Fraction
EXAMPLE
a(1) = 3 because 2 = prime(1) and 1/1 + 1/3 = 4/3, whose numerator is divisible by 2.
MATHEMATICA
len=100; a=Table[0, {len}]; done=False; s={0}; n=0; While[ !done, n++; s=Join[s, s+1/n]; ns=Numerator[s]; done=True; Do[If[a[[i]]==0, p=Prime[i]; If[Count[ns, _?(#>0 && Mod[ #, p]==0&)]>0, a[[i]]=n, done=False]], {i, len}]]; a
CROSSREFS
Cf. A092671 (n such that there is an Egyptian fraction partition of unity having smallest unit fraction 1/n), A093408.
Sequence in context: A028292 A256244 A233386 * A349351 A147658 A221529
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 29 2004
STATUS
approved