login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349351
Dirichlet inverse of A006368, "the amusical permutation", a(2n)=3n, a(4n+1)=3n+1, a(4n-1)=3n-1.
4
1, -3, -2, 3, -4, 3, -5, -3, -3, 9, -8, 6, -10, 9, 5, 3, -13, 15, -14, 0, 4, 15, -17, -15, -3, 21, 0, 9, -22, 9, -23, -3, 7, 27, 14, -24, -28, 27, 11, -9, -31, 27, -32, 12, 18, 33, -35, 24, -12, 15, 14, 6, -40, 9, 23, -27, 13, 45, -44, -63, -46, 45, 27, 3, 31, 39, -50, 9, 16, 9, -53, 6, -55, 57, 12, 18, 22, 33, -59
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A006368(n/d) * a(d).
a(n) = A349352(n) - A006368(n).
PROG
(PARI)
up_to = 20000;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A006368(n) = ((3*n)+(n%2))\(2+((n%2)*2));
v349351 = DirInverseCorrect(vector(up_to, n, A006368(n)));
A349351(n) = v349351[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved