login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052101
One of the three sequences associated with the polynomial x^3 - 2.
8
1, 1, 1, 3, 9, 21, 45, 99, 225, 513, 1161, 2619, 5913, 13365, 30213, 68283, 154305, 348705, 788049, 1780947, 4024809, 9095733, 20555613, 46454067, 104982561, 237252321, 536171481, 1211705163, 2738358009, 6188472981, 13985460405
OFFSET
0,4
COMMENTS
If x^3 = 2 and n >= 0, then there are unique integers a, b, c such that (1 + x)^n = a + b*x + c*x^2. The coefficient a is a(n).
REFERENCES
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.
LINKS
A. Kumar Gupta and A. Kumar Mittal, Integer Sequences associated with Integer Monic Polynomial, arXiv:math/0001112 [math.GM], Jan 2000.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3).
a(n)/a(n-1) tends to 2.259921049... = 1 + 2^(1/3) (a real root to (x - 1)^3 = 2 or x^3 - 3x^2 + 3x - 3 = 0). A 3 X 3 matrix corresponding to the latter polynomial is [0 1 0 / 0 0 1 / 3 -3 3]. Let the matrix = M. Then a(n) = the center term in M^n * [1, 1, 1]. M^[1, 1, 1] = [9, 21, 45], center term = a(4) - Gary W. Adamson, Mar 28 2004
a(n) = Sum_{0..floor(n/3)}, 2^k * binomial(n, 3*k). - Ralf Stephan, Aug 30 2004
From Paul Curtz, Mar 10 2008: (Start)
Equals the first differences of A052102.
Equals the second differences of A052103.
Equals the binomial transform of A077959.
a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4).
A052103 is binomial transform of c(n)=0, 1, 1, 0, 2, 2, 0, 4, 4, 0, 8, 8, ... b(n+1) - 2*b(n) is essentially 3*b(n). (End)
G.f.: (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3).
EXAMPLE
From the Schoof reference, pp. 17, 18: Set pi = 1 + sqrt[3]{2}. For every integer k >= 0, there are unique a_k,b_k,c_k in Q such that pi^k = a_k + b_k sqrt[3]{2} + c_k sqrt[3]{4}. The coefficients a_k,b_k,c_k are actually in Z:
Coefficients a_k, b_k, c_k:
k 0 1 2 3 4 5 6
----------------------------------------------
a_k 1 1 1 3 9 21 45
b_k 0 1 2 3 6 15 36
c_k 0 0 1 3 6 12 27
----------------------------------------------
G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 21*x^5 + 45*x^6 + 99*x^7 + 225*x^8 + ...
MAPLE
A052101 := n -> add(2^j*binomial(n, 3*j), j = 0..floor(n/3));
seq(A052101(n), n = 0..40); # G. C. Greubel, Apr 15 2021
MATHEMATICA
LinearRecurrence[{3, -3, 3}, {1, 1, 1}, 31] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) {a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 0)} /* Michael Somos, Aug 05 2009 */
(PARI) {a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k))} /* Michael Somos, Aug 05 2009 */
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* Michael Somos, Aug 05 2009 */
(Magma) [n le 3 select 1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // G. C. Greubel, Apr 15 2021
(Sage) [sum(2^j*binomial(n, 3*j) for j in (0..n//3)) for n in (0..40)] # G. C. Greubel, Apr 15 2021
CROSSREFS
Sequence in context: A376196 A068156 A166452 * A063830 A062444 A141156
KEYWORD
nonn,easy
AUTHOR
Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000
STATUS
approved