Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 17 2024 22:46:15
%S 1,1,1,3,9,21,45,99,225,513,1161,2619,5913,13365,30213,68283,154305,
%T 348705,788049,1780947,4024809,9095733,20555613,46454067,104982561,
%U 237252321,536171481,1211705163,2738358009,6188472981,13985460405
%N One of the three sequences associated with the polynomial x^3 - 2.
%C If x^3 = 2 and n >= 0, then there are unique integers a, b, c such that (1 + x)^n = a + b*x + c*x^2. The coefficient a is a(n).
%D Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
%D R. Schoof, Catalan's Conjecture, Springer-Verlag, 2008, pp. 17-18.
%H G. C. Greubel, <a href="/A052101/b052101.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Kumar Gupta and A. Kumar Mittal, <a href="https://arxiv.org/abs/math/0001112">Integer Sequences associated with Integer Monic Polynomial</a>, arXiv:math/0001112 [math.GM], Jan 2000.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,3).
%F a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3).
%F a(n)/a(n-1) tends to 2.259921049... = 1 + 2^(1/3) (a real root to (x - 1)^3 = 2 or x^3 - 3x^2 + 3x - 3 = 0). A 3 X 3 matrix corresponding to the latter polynomial is [0 1 0 / 0 0 1 / 3 -3 3]. Let the matrix = M. Then a(n) = the center term in M^n * [1, 1, 1]. M^[1, 1, 1] = [9, 21, 45], center term = a(4) - _Gary W. Adamson_, Mar 28 2004
%F a(n) = Sum_{0..floor(n/3)}, 2^k * binomial(n, 3*k). - _Ralf Stephan_, Aug 30 2004
%F From _Paul Curtz_, Mar 10 2008: (Start)
%F Equals the first differences of A052102.
%F Equals the second differences of A052103.
%F Equals the binomial transform of A077959.
%F a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 3*a(n-4).
%F A052103 is binomial transform of c(n)=0, 1, 1, 0, 2, 2, 0, 4, 4, 0, 8, 8, ... b(n+1) - 2*b(n) is essentially 3*b(n). (End)
%F G.f.: (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3).
%e From the Schoof reference, pp. 17, 18: Set pi = 1 + sqrt[3]{2}. For every integer k >= 0, there are unique a_k,b_k,c_k in Q such that pi^k = a_k + b_k sqrt[3]{2} + c_k sqrt[3]{4}. The coefficients a_k,b_k,c_k are actually in Z:
%e Coefficients a_k, b_k, c_k:
%e k 0 1 2 3 4 5 6
%e ----------------------------------------------
%e a_k 1 1 1 3 9 21 45
%e b_k 0 1 2 3 6 15 36
%e c_k 0 0 1 3 6 12 27
%e ----------------------------------------------
%e G.f. = 1 + x + x^2 + 3*x^3 + 9*x^4 + 21*x^5 + 45*x^6 + 99*x^7 + 225*x^8 + ...
%p A052101 := n -> add(2^j*binomial(n, 3*j), j = 0..floor(n/3));
%p seq(A052101(n), n = 0..40); # _G. C. Greubel_, Apr 15 2021
%t LinearRecurrence[{3, -3, 3},{1, 1, 1},31] (* _Ray Chandler_, Sep 23 2015 *)
%o (PARI) {a(n) = polcoeff( lift( Mod(1 + x, x^3 - 2)^n ), 0)} /* _Michael Somos_, Aug 05 2009 */
%o (PARI) {a(n) = sum(k=0, n\3, 2^k * binomial(n, 3*k))} /* _Michael Somos_, Aug 05 2009 */
%o (PARI) {a(n) = if( n<0, 0, polcoeff( (1 - x)^2 / (1 - 3*x + 3*x^2 - 3*x^3) + x * O(x^n), n))} /* _Michael Somos_, Aug 05 2009 */
%o (Magma) [n le 3 select 1 else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..41]]; // _G. C. Greubel_, Apr 15 2021
%o (Sage) [sum(2^j*binomial(n, 3*j) for j in (0..n//3)) for n in (0..40)] # _G. C. Greubel_, Apr 15 2021
%Y Cf. A052102, A052103.
%K nonn,easy
%O 0,4
%A Ashok K. Gupta and Ashok K. Mittal (akgjkiapt(AT)hotmail.com), Jan 20 2000