login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052100
a(n) = lcm(n, phi(n), n - phi(n)).
1
0, 2, 6, 4, 20, 12, 42, 8, 18, 60, 110, 24, 156, 168, 840, 16, 272, 36, 342, 120, 252, 660, 506, 48, 100, 1092, 54, 336, 812, 1320, 930, 32, 8580, 2448, 9240, 72, 1332, 3420, 1560, 240, 1640, 420, 1806, 1320, 2520, 6072, 2162, 96, 294, 300, 31008, 2184, 2756
OFFSET
1,2
COMMENTS
If n is a power of a prime p, then a(n) = n*(p-1). - Robert Israel, May 20 2015
LINKS
FORMULA
a(n) = lcm(n, A000010(n), A051953(n)).
For n=p prime, phi(p)=p-1, cototient(p)=p-1, a(p)=p(p-1)=A009262(p).
a(n) = n*A000010(n)*A051953(n)/A009195(n)^2. - Robert Israel, May 20 2015
EXAMPLE
For n=72, phi(72)=24, cototient(72)=48, a(72) = lcm(72,24,48) = 144.
For n=255, phi(255)=128, cototient(255)=127, a(255) = lcm(255,128,127) = 4145280.
MAPLE
seq(ilcm(n, numtheory:-phi(n), n - numtheory:-phi(n)), n=1..100); # Robert Israel, May 20 2015
MATHEMATICA
Table[LCM[n, EulerPhi[n], n - EulerPhi[n]], {n, 53}] (* Ivan Neretin, May 20 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 20 2000
STATUS
approved