login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112326
Triangle read by rows: T(n,k)=2^k*binomial(2n-k,n-k), 1<=k<=n.
0
2, 6, 4, 20, 16, 8, 70, 60, 40, 16, 252, 224, 168, 96, 32, 924, 840, 672, 448, 224, 64, 3432, 3168, 2640, 1920, 1152, 512, 128, 12870, 12012, 10296, 7920, 5280, 2880, 1152, 256, 48620, 45760, 40040, 32032, 22880, 14080, 7040, 2560, 512, 184756, 175032
OFFSET
1,1
COMMENTS
Row sums yield A068551.
T(n,1) = binomial(2n,n) = A000984(n); T(n,n) = 2^n.
REFERENCES
M. Eisen, Elementary Combinatorial Analysis, Gordon and Breach, 1969 (p. 150).
LINKS
F. Ruskey, Average shape of binary trees, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50.
EXAMPLE
Triangle starts:
2;
6,4;
20,16,8;
70,60,40,16;
MAPLE
T:=proc(n, k) if k<=n then 2^k*binomial(2*n-k, n-k) else 0 fi end: for n from 1 to 10 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[2^k*Binomial[2n-k, n-k], {n, 1, 10}, {k, 1, n}]] (* Stefano Spezia, Sep 20 2019 *)
CROSSREFS
Sequence in context: A052100 A079579 A309243 * A075435 A069875 A202962
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 04 2005
STATUS
approved