login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112327
Triangle read by rows: T(n,k)=k^3*2^k*binomial(2n-k,n-k)/(2n-k) (1<=k<=n).
1
2, 2, 16, 4, 32, 72, 10, 80, 216, 256, 28, 224, 648, 1024, 800, 84, 672, 2016, 3584, 4000, 2304, 264, 2112, 6480, 12288, 16000, 13824, 6272, 858, 6864, 21384, 42240, 60000, 62208, 43904, 16384, 2860, 22880, 72072, 146432, 220000, 253440, 219520, 131072
OFFSET
1,1
COMMENTS
T(n,1) = 2*Catalan(n-1) = 2*A000108(n-1); T(n,n) = 2^n*n^2 = A007758(n).
Row sums yield A112328.
LINKS
F. Ruskey, Average shape of binary trees, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50 (Eq. (8)).
EXAMPLE
Triangle starts:
2;
2,16;
4,32,72;
10,80,216,256;
MAPLE
T:=proc(n, k) if k<2*n then k^3*2^k*binomial(2*n-k, n-k)/(2*n-k) else 0 fi end: for n from 1 to 10 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 04 2005
STATUS
approved