The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A345225 a(n) = order of 2-primary subgroup of the group K_n(Z). 2
 1, 2, 2, 16, 1, 1, 1, 16, 1, 2, 2, 16, 1, 1, 1, 32, 1, 2, 2, 16, 1, 1, 1, 48, 1, 2, 2, 16, 1, 1, 1, 64, 1, 2, 2, 16, 1, 1, 1, 80, 1, 2, 2, 16, 1, 1, 1, 96, 1, 2, 2, 16, 1, 1, 1, 112, 1, 2, 2, 16, 1, 1, 1, 128, 1, 2, 2, 16, 1, 1, 1, 144, 1, 2, 2, 16, 1, 1, 1, 160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The algebraic K-theory groups of the integers are not yet (as of June 2021) completely known, however the 2-primary part is settled. In fact, the 2-primary part of the abelian group K_n(Z) is the cyclic group Z/a(n)Z. REFERENCES C. Weibel, The K-book: An Introduction to Algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. ISBN: 978-0-8218-9132-. LINKS Tom Harris, Table of n, a(n) for n = 0..9999 C. Weibel, The 2-torsion in the K-theory of the integers, C. R. Acad. Sci. Paris 324 (1997), 615-620. FORMULA a(n) is:         1 if n mod 8 = 0, 4, 5, or 6         2 if n mod 8 = 1 or 2        16 if n mod 8 = 3   2*(n+1) if n mod 8 = 7. (The main result of Weibel's 1997 paper on the 2-torsion in the K-theory of the integers; Corollary 9.8 of Weibel's K-book.) PROG (Python) def a(n):     n_ = (n % 8)     d = {0:1, 1:2, 2:2, 3:16, 4:1, 5:1, 6:1}     if n_ == 7:         return 2*(n+1)     else:         return d[n_] CROSSREFS Sequence in context: A184718 A079897 A097540 * A112327 A152541 A302339 Adjacent sequences:  A345222 A345223 A345224 * A345226 A345227 A345228 KEYWORD easy,nonn AUTHOR Tom Harris, Jun 11 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 02:06 EST 2022. Contains 350374 sequences. (Running on oeis4.)