OFFSET
1,1
COMMENTS
Row sums of A112327.
LINKS
Robert Israel, Table of n, a(n) for n = 1..1656
F. Ruskey, Average shape of binary trees, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50 (Eq. (8)).
FORMULA
G.f.: 4z[2-sqrt(1-4z)]/[(1-4z)^(3/2)(1+sqrt(1-4z)]
32*(2*n^2 - 9*n + 10)*a(n - 3) - 8*(2*n^2 - 14*n + 15)*a(n - 2) - 2*(2*n^2 + 3*n - 5)*a(n - 1) + n*(n - 1)*a(n) = 0. - Robert Israel, Sep 19 2019
MAPLE
a:=n->(n+1)*binomial(2*n+2, n+1)-3*4^n+binomial(2*n, n): seq(a(n), n=1..25);
MATHEMATICA
a[n_]:=(n+1)*Binomial[2n+2, n+1]-3*4^n+Binomial[2n, n]; Array[a, 22] (* Stefano Spezia, Sep 20 2019 *)
PROG
(PARI) a(n) = (n+1)*binomial(2*n+2, n+1)-3*4^n+binomial(2*n, n); \\ Michel Marcus, Sep 20 2019
(Magma) [(n+1)*Binomial(2*n+2, n+1)-3*4^n+Binomial(2*n, n):n in [1..22]]; // Marius A. Burtea, Sep 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 04 2005
STATUS
approved