login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112328
a(n) = (n+1)*binomial(2n+2,n+1)-3*4^n+binomial(2n,n).
2
2, 18, 108, 562, 2724, 12660, 57240, 253842, 1109748, 4798780, 20572392, 87580308, 370706408, 1561573032, 6551178288, 27387484242, 114146434068, 474476717292, 1967642119368, 8142727008732, 33634295542968, 138696447565272
OFFSET
1,1
COMMENTS
Row sums of A112327.
LINKS
F. Ruskey, Average shape of binary trees, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50 (Eq. (8)).
FORMULA
G.f.: 4z[2-sqrt(1-4z)]/[(1-4z)^(3/2)(1+sqrt(1-4z)]
32*(2*n^2 - 9*n + 10)*a(n - 3) - 8*(2*n^2 - 14*n + 15)*a(n - 2) - 2*(2*n^2 + 3*n - 5)*a(n - 1) + n*(n - 1)*a(n) = 0. - Robert Israel, Sep 19 2019
MAPLE
a:=n->(n+1)*binomial(2*n+2, n+1)-3*4^n+binomial(2*n, n): seq(a(n), n=1..25);
MATHEMATICA
a[n_]:=(n+1)*Binomial[2n+2, n+1]-3*4^n+Binomial[2n, n]; Array[a, 22] (* Stefano Spezia, Sep 20 2019 *)
PROG
(PARI) a(n) = (n+1)*binomial(2*n+2, n+1)-3*4^n+binomial(2*n, n); \\ Michel Marcus, Sep 20 2019
(Magma) [(n+1)*Binomial(2*n+2, n+1)-3*4^n+Binomial(2*n, n):n in [1..22]]; // Marius A. Burtea, Sep 20 2019
CROSSREFS
Cf. A112327.
Sequence in context: A345969 A101570 A006043 * A370732 A038721 A308700
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 04 2005
STATUS
approved