login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370732
a(n) = 4^n * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/4).
3
1, 2, 18, 108, 822, 4796, 37492, 231704, 1738150, 11857004, 87262684, 617409128, 4638712124, 33724007896, 253800160808, 1894353653552, 14350905612038, 108412437326412, 827441075006796, 6308125533133896, 48388714839180756, 371391625244862600, 2860885559165073624
OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} 1/(1 - 2*(4*x)^k)^(1/4).
a(n) ~ 8^n / (Gamma(1/4) * QPochhammer(1/2)^(1/4) * n^(3/4)).
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 4^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[1/(1-2*(4*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
CROSSREFS
Cf. A070933 (m=1), A370713 (m=2), A370715 (m=3), A370733 (m=5).
Sequence in context: A101570 A006043 A112328 * A038721 A308700 A064837
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2024
STATUS
approved