OFFSET
0,2
COMMENTS
In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} 1/(1 - d*x^k)^(1/m), then a(n) ~ d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).
FORMULA
G.f.: Product_{k>=1} 1/(1 - 3*(25*x)^k)^(1/5).
a(n) ~ 75^n / (Gamma(1/5) * QPochhammer(1/3)^(1/5) * n^(4/5)).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-3*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2024
STATUS
approved