login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370733
a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 2*x^k)^(1/5).
2
1, 10, 550, 19750, 921250, 32011250, 1563143750, 58080093750, 2719958906250, 113913469531250, 5214823539843750, 228024893230468750, 10704801509316406250, 482674223446582031250, 22664252188144042968750, 1053427002068999511718750, 49776941230938518066406250
OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} 1/(1 - 2*(25*x)^k)^(1/5).
a(n) ~ 50^n / (Gamma(1/5) * QPochhammer(1/2)^(1/5) * n^(4/5)).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1-2*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-2*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]
CROSSREFS
Cf. A070933 (m=1), A370713 (m=2), A370715 (m=3), A370732 (m=4).
Sequence in context: A289200 A014382 A325147 * A035308 A327412 A212925
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2024
STATUS
approved