login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327412
a(n) = multinomial(3*n+2; 2, 3, 3, ..., 3) (n times '3').
2
1, 10, 560, 92400, 33633600, 22870848000, 26072766720000, 46174869861120000, 120054661638912000000, 438679733628584448000000, 2175851478797778862080000000, 14240947928731462652313600000000, 120136636726778618934917529600000000, 1280656547507460077846220865536000000000
OFFSET
0,2
FORMULA
a(n) = 2^(-n-1)*3^(-n)*Gamma(3*n + 3).
a(n) = (9*(n-1)^3 + 36*(n-1)^2 + 47*n - 27)*a(n-1)/2 for n > 0.
a(n) / n! = A025035(n+1).
a(n)*(n+1) = A014606(n+1).
MAPLE
a:= n-> combinat[multinomial](3*n+2, 3$n, 2):
seq(a(n), n=0..17); # Alois P. Heinz, Sep 07 2019
PROG
(SageMath)
def a(n): return multinomial([2] + [3] * n)
[a(n) for n in range(15)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 07 2019
STATUS
approved