login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370734
a(n) = 8^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/4).
1
1, 6, 138, 2292, 47046, 852756, 18266628, 366635112, 7948637382, 170568754692, 3761729402412, 83136335360856, 1863229219846428, 41883396293989320, 948524060727094728, 21555960625992644304, 492036151405623971142, 11264431786398948383844, 258676355450246122857756
OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} 1/(1 - 3*(8*x)^k)^(1/4).
a(n) ~ 24^n / (Gamma(1/4) * QPochhammer(1/3)^(1/4) * n^(3/4)).
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x] * 8^Range[0, nmax]
nmax = 20; CoefficientList[Series[Product[1/(1-3*(8*x)^k), {k, 1, nmax}]^(1/4), {x, 0, nmax}], x]
CROSSREFS
Cf. A242587 (m=1), A370714 (m=2), A370710 (m=3), A370735 (m=5).
Sequence in context: A075185 A376113 A003994 * A307353 A366227 A155558
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2024
STATUS
approved