OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} 1/(1 - 3*(3*x)^k)^(1/3).
a(n) ~ c * 9^n / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer(1/3)^(1/3)) = 0.45283708537555770181385241925945547307046394744...
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
nmax = 25; CoefficientList[Series[Product[1/(1-3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
nmax = 25; CoefficientList[Series[(-2/QPochhammer[3, x])^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 27 2024
STATUS
approved