login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370710
a(n) = 3^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/3).
4
1, 3, 27, 180, 1431, 10206, 83025, 641277, 5264109, 42896790, 357649587, 2989185039, 25284805857, 214547921451, 1832454271926, 15702526829196, 135091225972926, 1165383100947105, 10081310266960155, 87401262194470719, 759320707197024909, 6608561546767471227, 57610976508944343963
OFFSET
0,2
FORMULA
G.f.: Product_{k>=1} 1/(1 - 3*(3*x)^k)^(1/3).
a(n) ~ c * 9^n / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer(1/3)^(1/3)) = 0.45283708537555770181385241925945547307046394744...
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
nmax = 25; CoefficientList[Series[Product[1/(1-3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
nmax = 25; CoefficientList[Series[(-2/QPochhammer[3, x])^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
CROSSREFS
Sequence in context: A297670 A378867 A220820 * A241271 A222015 A127215
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 27 2024
STATUS
approved