login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064625
Generalization of the Genocchi numbers. Generated by the Gandhi polynomials A(n+1,r) = r^4 A(n,r+1) - (r-1)^4 A(n,r); A(1,r) = r^4 - (r-1)^4.
4
1, 1, 15, 1025, 209135, 100482849, 97657699279, 172687606607425, 513828770061202095, 2422699282016359575905, 17259669919850500726265231, 178741720937382151333667162241, 2605965447000176066894638515610735
OFFSET
0,3
REFERENCES
M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata. Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).
FORMULA
a(n) = A(n-1, 1) for the above Gandhi polynomials.
O.g.f.: Sum_{n>=0} n!^4 * x^n / Product_{k=1..n} (1 + k^4*x). [From Paul D. Hanna, Jul 21 2011]
EXAMPLE
O.g.f.: A(x) = 1 + x + 15*x^2 + 1025*x^3 + 209135*x^4 + 100482849*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^4*x^2/((1+x)*(1+16*x)) + 3!^4*x^3/((1+x)*(1+16*x)*(1+81*x)) + 4!^4*x^4/((1+x)*(1+16*x)*(1+81*x)*(1+256*x)) +... [From Paul D. Hanna, Jul 21 2011]
MATHEMATICA
a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^4*a[n-1, r+1]-(r-1)^4*a[n-1, r]; a[1, r_ /; r >= 0] := r^4-(r-1)^4; a[_, _] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 23 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^4*x^m/prod(k=1, m, 1+k^4*x+x*O(x^n))), n)}
CROSSREFS
Sequence in context: A196569 A019282 A082158 * A241331 A205602 A370735
KEYWORD
easy,nonn
AUTHOR
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001
STATUS
approved