login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233509
Number of tilings of a 2 X 5 X n box using bricks of shape 3 X 1 X 1 and 2 X 1 X 1.
5
1, 15, 1062, 148414, 16512483, 2043497465, 257251613508, 31941208907916, 3990164870713039, 498504394558488109, 62237975023439983192, 7773270324407375580946, 970802515607358269506951, 121240108673115249961266051, 15141593230837339625055971170
OFFSET
0,2
LINKS
EXAMPLE
a(1) = A219866(5,2) = A129682(5) = A219866(2,5) = A219868(2) = 15:
.___. .___. .___. .___. .___. .___. .___. .___.
| | | |___| | | | |___| | | | |___| | | | |___|
| | | |___| |_|_| | | | | | | |___| |_|_| | | |
|_|_| |___| |___| |_|_| |_|_| |___| |___| |_|_|
| | | | | | | | | | | | |___| |___| |___| |___|
|_|_| |_|_| |_|_| |_|_| |___| |___| |___| |___|
.___. .___. .___. .___. .___. .___. .___.
| | | | | | |___| |___| | | | | | | |___|
|_|_| |_|_| |___| |___| |_| | | |_| | | |
| | | | | | | | | | | | | |_| |_| | | | |
| | | |_|_| | | | |_|_| | | | | | | |_|_|
|_|_| |___| |_|_| |___| |_|_| |_|_| |___|.
MAPLE
b:= proc(n, l) option remember; local k, t; t:= min(l[]);
if n=0 then 1 elif t>0 then b(n-t, map(h->h-t, l))
else for k while l[k]>0 do od;
add(`if`(n>=j, b(n, s(k=j, l)), 0), j=2..3)+
`if`(k<=5 and l[k+5]=0, b(n, s(k=1, k+5=1, l)), 0)+
`if`(irem(k, 5)>0 and l[k+1]=0, b(n, s(k=1, k+1=1, l)), 0)+
`if`(irem(k, 5) in [$1..3] and l[k+1]=0 and l[k+2]=0,
b(n, s(k=1, k+1=1, k+2=1, l)), 0)
fi
end:
a:=n-> b(n, [0$10]): s:=subsop:
seq(a(n), n=0..4);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{k, t}, t = Min[l]; Which[n == 0, 1, t > 0, b[n-t, l-t], True, For[k = 1, l[[k]] > 0, k++]; Sum[If[n >= j, b[n, ReplacePart[l, k -> j]], 0], {j, 2, 3}] + If[k <= 5 && l[[k+5]] == 0, b[n, ReplacePart[l, {k -> 1, k+5 -> 1}]], 0] + If[Mod[k, 5] > 0 && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[1 <= Mod[k, 5] <= 3 && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]; a[n_] := b[n, Array[0&, 10]]; Table[Print[an = a[n]]; an, {n, 0, 14}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 11 2013
STATUS
approved