login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233313
Number of tilings of a 2 X 3 X n box using bricks of shape 3 X 1 X 1 and 2 X 1 X 1.
5
1, 4, 45, 717, 9787, 148414, 2282036, 34688229, 530613082, 8119995275, 124183342755, 1899899589557, 29066650643742, 444678773140018, 6803102237763707, 104079849391557116, 1592303310404361651, 24360457647669398381, 372687643806340329749, 5701702230014416236396
OFFSET
0,2
LINKS
EXAMPLE
a(1) = A219866(3,2) = A129682(3) = A219866(2,3) = A219867(2) = 4:
._____. ._____. ._____. ._____.
|_____| | | | | |___| | | |___|
|_____| |_|_|_| |___|_| |_|___|.
MAPLE
s:= subsop:
b:= proc(n, l) option remember; local k, t; t:= min(l[]);
if n=0 then 1 elif t>0 then b(n-t, map(h->h-t, l))
else for k while l[k]>0 do od; add(`if`(n>=j,
b(n, s(k=j, l)), 0), j=2..3)+ `if`(k<=4 and l[k+2]=0,
b(n, s(k=1, k+2=1, l))+ `if`(k<=2 and l[k+4]=0,
b(n, s(k=1, k+2=1, k+4=1, l)), 0), 0)+ `if`(
irem(k, 2)>0 and l[k+1]=0, b(n, s(k=1, k+1=1, l)), 0)
fi
end:
a:=n-> b(n, [0$6]):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{k, t}, t = Min[l]; If [n == 0, 1, If[t > 0, b[n-t, l-t], k = 1; While[l[[k]] > 0 , k++]; Sum[If[n >= j, b[n, ReplacePart[l, k -> j]], 0], {j, 2, 3}] + If[k <= 4 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+2 -> 1}]] + If[k <= 2 && l[[k+4]] == 0, b[n, ReplacePart[l, {k -> 1, k+2 -> 1, k+4 -> 1}]], 0], 0] + If[Mod[k, 2] > 0 && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] ] ] ]; a[n_] := b[n, Array[0&, 6]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 07 2013
STATUS
approved