login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233316
a(n) = Numerator(binomial(n+2, 2)*Bernoulli(n, 1)) for n >= 0 and 0 for n < 0.
2
0, 0, 1, 3, 1, 0, -1, 0, 2, 0, -3, 0, 5, 0, -691, 0, 140, 0, -10851, 0, 219335, 0, -1222277, 0, 1709026, 0, -1181820455, 0, 538845489, 0, -23749461029, 0, 68926730208040, 0, -84802531453387, 0, 270657225128535, 0, -26315271553053477373, 0, 380899208799402670, 0, -1827579029475143854357
OFFSET
-2,4
COMMENTS
Numerators of 0, 0, followed by A000217(n)*A164555(n)/A027642(n).
Third fractional autosequence after (1) (Br0(n) = ) A164555/A027642 and (2) Br(n) = A229979/(c(n) = 1,1,1,2,1,6,... = 1 interleaved with A006955 or 1 followed by A050932; thanks to Jean-François Alcover). Hence
Br2(n) = 0, 0, 1, 3/2, 1, 0, -1/2, 0, 2/3, 0, -3/2, 0, 5, 0, -691/30, ..., second complementary Bernoulli numbers.
Br2(n) differences table:
0, 0, 1, 3/2, 1, 0, -1/2, ...
0, 1, 1/2, -1/2, -1, -1/2, 1/2, ...
1, -1/2, -1, -1/2, 1/2, 1, 1/6, ...
-3/2, -1/2, 1/2, 1, 1/2, -5/6, -3/2, ...
1, 1, 1/2, -1/2, -4/3, -2/3, 2, ...
0, -1/2, -1, -5/6, 2/3, 8/3, 4/3, ...
-1/2, -1/2, 1/6, 3/2, 2, -4/3, -8, ... .
The main diagonal is the double of the first upper diagonal. Then, the autosequence (its inverse binomial transform is the signed sequence) is of second kind. Note that Br0(n) is an autosequence of second kind and Br(n) an autosequence of first kind.
First Bernoulli polynomials, i.e., for B(1) = -1/2, A196838/A196839, with 0's instead of the spaces:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
-1/2, 1, 0, 0, 0, 0, 0, 0, 0, ...
1/6, -1, 1, 0, 0, 0, 0, 0, 0, ...
0, 1/2, -3/2, 1, 0, 0, 0, 0, 0, ...
-1/30, 0, 1, -2, 1, 0, 0, 0, 0, ...
0, -1/6, 0, 5/3, -5/2, 1, 0, 0, 0, ...
1/42, 0, -1/2, 0, 5/2, -3, 1, 0, 0, ...
0, 1/6, 0, -7/6, 0, 0, -7/2, 1, 0, ...
-1/30, 0, 2/3, 0, -7/3, 0, 14/3, -4, 10, ... .
First column: A164555/A027642 with -1/2 instead of 1/2, A027641/A027642.
Second column: A229979/c(n) with -1 instead of 1, first column in A229979.
Third column: Br2(n) with -3/2 instead of 3/2, first column of the first array.
Etc.
Sequences used for Brp(n). For p=1, Br(n) is used.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... = A001477,
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 0, 0, 1, 4, 10, 20, 35, 56, 84, ... . See A052553.
For every sequence, the multiplication by A164555/A027642 begins at 1.
(Br0(n), Br(n), Br2(n), Br3(n), ... lead to A193815.)
EXAMPLE
a(2) = 1*1 = 1,
a(3) = 3*1/2 = 3/2,
a(4) = 6/6 = 1,
a(5) = 10*0 = 0,
a(6) = -15/30 = -1/2.
MATHEMATICA
b[-2] = b[-1] = 0; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := (n+1)*(n+2)/2*b[n] // Numerator; Table[a[n], {n, -2, 40}] (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
Cf. A190339(array). A000012 for Br0(n), A000217 for Br(n)=A229979/c(n), A000217 for Br2(n), A000292 for Br3(n).
Sequence in context: A227570 A352269 A111700 * A060096 A245756 A360672
KEYWORD
sign,frac,tabl,uned
AUTHOR
Paul Curtz, Dec 07 2013
EXTENSIONS
Corrected and extended by Jean-François Alcover, Dec 09 2013
STATUS
approved