OFFSET
-2,4
COMMENTS
Third fractional autosequence after (1) (Br0(n) = ) A164555/A027642 and (2) Br(n) = A229979/(c(n) = 1,1,1,2,1,6,... = 1 interleaved with A006955 or 1 followed by A050932; thanks to Jean-François Alcover). Hence
Br2(n) = 0, 0, 1, 3/2, 1, 0, -1/2, 0, 2/3, 0, -3/2, 0, 5, 0, -691/30, ..., second complementary Bernoulli numbers.
Br2(n) differences table:
0, 0, 1, 3/2, 1, 0, -1/2, ...
0, 1, 1/2, -1/2, -1, -1/2, 1/2, ...
1, -1/2, -1, -1/2, 1/2, 1, 1/6, ...
-3/2, -1/2, 1/2, 1, 1/2, -5/6, -3/2, ...
1, 1, 1/2, -1/2, -4/3, -2/3, 2, ...
0, -1/2, -1, -5/6, 2/3, 8/3, 4/3, ...
-1/2, -1/2, 1/6, 3/2, 2, -4/3, -8, ... .
The main diagonal is the double of the first upper diagonal. Then, the autosequence (its inverse binomial transform is the signed sequence) is of second kind. Note that Br0(n) is an autosequence of second kind and Br(n) an autosequence of first kind.
First Bernoulli polynomials, i.e., for B(1) = -1/2, A196838/A196839, with 0's instead of the spaces:
1, 0, 0, 0, 0, 0, 0, 0, 0, ...
-1/2, 1, 0, 0, 0, 0, 0, 0, 0, ...
1/6, -1, 1, 0, 0, 0, 0, 0, 0, ...
0, 1/2, -3/2, 1, 0, 0, 0, 0, 0, ...
-1/30, 0, 1, -2, 1, 0, 0, 0, 0, ...
0, -1/6, 0, 5/3, -5/2, 1, 0, 0, 0, ...
1/42, 0, -1/2, 0, 5/2, -3, 1, 0, 0, ...
0, 1/6, 0, -7/6, 0, 0, -7/2, 1, 0, ...
-1/30, 0, 2/3, 0, -7/3, 0, 14/3, -4, 10, ... .
Third column: Br2(n) with -3/2 instead of 3/2, first column of the first array.
Etc.
Sequences used for Brp(n). For p=1, Br(n) is used.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... = A001477,
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
0, 0, 0, 1, 4, 10, 20, 35, 56, 84, ... . See A052553.
(Br0(n), Br(n), Br2(n), Br3(n), ... lead to A193815.)
EXAMPLE
a(2) = 1*1 = 1,
a(3) = 3*1/2 = 3/2,
a(4) = 6/6 = 1,
a(5) = 10*0 = 0,
a(6) = -15/30 = -1/2.
MATHEMATICA
b[-2] = b[-1] = 0; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := (n+1)*(n+2)/2*b[n] // Numerator; Table[a[n], {n, -2, 40}] (* Jean-François Alcover, Dec 09 2013 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Dec 07 2013
EXTENSIONS
Corrected and extended by Jean-François Alcover, Dec 09 2013
STATUS
approved