login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233317
Integer areas A of the integer-sided triangles such that the inradius and the radius of the three excircles are perfect squares.
0
108, 1728, 8748, 12348, 27648, 67500, 139968, 197568, 259308, 442368, 707472, 708588, 1000188, 1080000, 1581228, 2239488, 3084588, 3161088, 4148928, 5467500, 7077888, 7717500, 9020268, 11319552, 11337408, 14074668, 16003008, 17280000, 21003948, 25299648
OFFSET
1,1
COMMENTS
Subset of A185210.
A = sqrt(s*(p-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
The inradius is r = A/s;
The radii of the three excircles are r1 = 2*A/(-a+b+c); x2 = 2*A*b/(a-b+c); x3 = 2*A*c/(a+b-c).
The areas A of the primitive triangles of sides (a,b,c) are 108, 12348, ...
The areas of the nonprimitive triangles of sides (a*p^2, b*p^2, c*p^2) are in the sequence with the value A*p^4.
The following table gives the first values (A, a, b, c, r, r1, r2, r3) where A is the area of the triangle, a, b, c the integer sides, r, r1, r2 and r3 are respectively the length of the inradius and the radius of the three excircles.
+--------+-----+------+------+------+------+------+------+
| A | a | b | c | r | r1 | r2 | r3 |
+--------+-----+------+------+------+------+------+------+
| 108 | 15 | 15 | 24 | 2^2 | 3^2 | 3^2 | 6^2 |
| 1728 | 60 | 60 | 96 | 4^2 | 6^2 | 6^2 | 12^2 |
| 8748 | 135 | 135 | 216 | 6^2 | 9^2 | 9^2 | 18^2 |
| 12348 | 91 | 280 | 315 | 6^2 | 7^2 | 14^2 | 21^2 |
| 27648 | 240 | 240 | 384 | 8^2 | 12^2 | 12^2 | 24^2 |
| 67500 | 375 | 375 | 600 | 10^2 | 15^2 | 15^2 | 30^2 |
| 139968 | 540 | 540 | 864 | 12^2 | 18^2 | 18^2 | 36^2 |
| 197568 | 364 | 1120 | 1260 | 12^2 | 14^2 | 28^2 | 42^2 |
| 259308 | 735 | 735 | 1176 | 14^2 | 21^2 | 21^2 | 42^2 |
+--------+-----+------+------+------+------+------+------+
LINKS
Eric Weisstein's World of Mathematics, Excircles.
Eric Weisstein's World of Mathematics, Exradius.
Eric Weisstein's World of Mathematics, Inradius.
MATHEMATICA
nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[area2>0&& IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]] && IntegerQ[Sqrt[2*Sqrt[area2]/(-a+b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a-b+c)]] && IntegerQ[Sqrt[2*Sqrt[area2]/(a+b-c)]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
Cf. A185210.
Sequence in context: A115135 A202309 A279981 * A263970 A250339 A263961
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 07 2013
STATUS
approved