login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115135
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+617)^2 = y^2.
7
0, 108, 1407, 1851, 2407, 9768, 12340, 15568, 58435, 73423, 92235, 342076, 429432, 539076, 1995255, 2504403, 3143455, 11630688, 14598220, 18322888, 67790107, 85086151, 106795107, 395111188, 495919920, 622448988, 2302878255, 2890434603
OFFSET
1,2
COMMENTS
Also values x of Pythagorean triples (x, x+617, y).
Corresponding values y of solutions (x, y) are in A160176.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (633+100*sqrt(2))/617 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (755667+461578*sqrt(2))/617^2 for n mod 3 = 0.
FORMULA
a(n) = 6*a(n-3) -a(n-6) +1234 for n > 6; a(1)=0, a(2)=108, a(3)=1407, a(4)=1851, a(5)=2407, a(6)=9768.
G.f.: x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 617*A001652(k) for k >= 0.
MATHEMATICA
LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 108, 1407, 1851, 2407, 9768, 12340}, 50] (* G. C. Greubel, May 04 2018 *)
PROG
(PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689), print1(n, ", ")))}
(PARI) x='x+O('x^30); Vec(x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
(Magma) I:=[0, 108, 1407, 1851, 2407, 9768, 12340]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
CROSSREFS
Cf. A160176, A001652, A111258, A156035 (decimal expansion of 3+2*sqrt(2)), A160177 (decimal expansion of (633+100*sqrt(2))/617), A160178 (decimal expansion of (755667+461578*sqrt(2))/617^2).
Sequence in context: A096953 A187302 A269277 * A202309 A279981 A233317
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Jun 03 2007
EXTENSIONS
Edited and two terms added by Klaus Brockhaus, May 18 2009
STATUS
approved