Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:23
%S 0,108,1407,1851,2407,9768,12340,15568,58435,73423,92235,342076,
%T 429432,539076,1995255,2504403,3143455,11630688,14598220,18322888,
%U 67790107,85086151,106795107,395111188,495919920,622448988,2302878255,2890434603
%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+617)^2 = y^2.
%C Also values x of Pythagorean triples (x, x+617, y).
%C Corresponding values y of solutions (x, y) are in A160176.
%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
%C lim_{n -> infinity} a(n)/a(n-1) = (633+100*sqrt(2))/617 for n mod 3 = {1, 2}.
%C lim_{n -> infinity} a(n)/a(n-1) = (755667+461578*sqrt(2))/617^2 for n mod 3 = 0.
%H G. C. Greubel, <a href="/A115135/b115135.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).
%F a(n) = 6*a(n-3) -a(n-6) +1234 for n > 6; a(1)=0, a(2)=108, a(3)=1407, a(4)=1851, a(5)=2407, a(6)=9768.
%F G.f.: x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6)).
%F a(3*k+1) = 617*A001652(k) for k >= 0.
%t LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,108,1407,1851,2407,9768,12340}, 50] (* _G. C. Greubel_, May 04 2018 *)
%o (PARI) {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689), print1(n, ",")))}
%o (PARI) x='x+O('x^30); Vec(x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6))) \\ _G. C. Greubel_, May 04 2018
%o (Magma) I:=[0,108,1407,1851,2407,9768,12340]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +self(n-7): n in [1..30]]; // _G. C. Greubel_, May 04 2018
%Y Cf. A160176, A001652, A111258, A156035 (decimal expansion of 3+2*sqrt(2)), A160177 (decimal expansion of (633+100*sqrt(2))/617), A160178 (decimal expansion of (755667+461578*sqrt(2))/617^2).
%K nonn,easy
%O 1,2
%A _Mohamed Bouhamida_, Jun 03 2007
%E Edited and two terms added by _Klaus Brockhaus_, May 18 2009