login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233319 E.g.f. A(x) satisfies: A'(x) = A(x*A'(x))^3. 2
1, 1, 3, 33, 726, 25236, 1229328, 78167484, 6193726506, 592068123054, 66673324219176, 8685890001564984, 1290531658541292252, 216188985806157611520, 40449991773179254230432, 8386998677130790903212000, 1914263814914709029067344724, 478208364783447353623777136772 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
CONJECTURES:
a(n) == 0 (mod 2) for n>=4.
a(n) == 0 (mod 2^2) for n>=10.
a(n) == 0 (mod 2^3) for n>=18.
a(n) == 0 (mod 2^k) for n>=(8*k-6), k>=2.
a(n) == 0 (mod 3) for n>=2.
a(n) == 0 (mod 3^2) for n>=5.
a(n) == 0 (mod 3^3) for n>=7.
a(n) == 0 (mod 3^4) for n>=10.
a(n) == 0 (mod 3^k) for n>=(3*k-2), k>=3.
a(n) == 0 (mod 13) for n>=13.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x)^3 = A'(x/A(x)^3).
E.g.f. A(x) satisfies: A(x) = ( x / Series_Reversion( x*A'(x) ) )^(1/3).
a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n for n>=1.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 33*x^3/3! + 726*x^4/4! + 25236*x^5/5! +...
such that
A(x*A'(x))^3 = A'(x) = 1 + 3*x + 33*x^2/2! + 726*x^3/3! + 25236*x^4/4! +...
A(x*A'(x)) = (A'(x))^(1/3) = 1 + x + 9*x^2/2! + 186*x^3/3! + 6330*x^4/4! + 306846*x^5/5! + 19560006*x^6/6! + 1559472498*x^7/7! +...
To illustrate a(n) = [x^(n-1)/(n-1)!] A(x)^(3*n)/n, create a table of coefficients of x^k/k!, k>=0, in A(x)^(3*n) like so:
A^3: [1, 3, 15, 159, 3240, 106218, 4961250, 305900982, ...];
A^6: [1, 6, 48, 588, 11646, 357336, 15709968, 923153004, ...];
A^9: [1, 9, 99, 1449, 30078, 899964, 37750104, 2118453588, ...];
A^12:[1, 12, 168, 2904, 65340, 1977912, 80833248, 4365682056, ...];
A^15:[1, 15, 255, 5115, 126180, 3961350, 161145630, 8476536330, ...];
A^18:[1, 18, 360, 8244, 223290, 7375968, 304020000, 15786282132, ...];
A^21:[1, 21, 483, 12453, 369306, 12932136, 547172388, 28405637064, ...];
A^24:[1, 24, 624, 17904, 578808, 21554064, 944463744, 49549812048, ...]; ...
then the diagonal in the above table generates this sequence shift left:
[1/1, 6/2, 99/3, 2904/4, 126180/5, 7375968/6, 547172388/7, 49549812048/8, ...].
SUMS OF TERM RESIDUES MODULO 2^n.
Given a(k) == 0 (mod 2^n) for k>=(8*n-6) for n>=2, then it is interesting to consider the sums of the residues of all terms modulo 2^n for n>=1.
Let b(n) = Sum_{k>=0} a(k) (mod 2^n) for n>=1, then the sequence {b(n)} begins:
[4, 12, 40, 112, 336, 848, 2128, 5584, 13776, 29648, 64464, 136144, 316368, ...].
SUMS OF TERM RESIDUES MODULO 3^n.
Given a(k) == 0 (mod 3^n) for k>=(3*n-2) for n>=3, then it is interesting to consider the sums of the residues of all terms modulo 3^n for n>=1.
Let c(n) = Sum_{k>=0} a(k) (mod 3^n) for n>=1, then the sequence {c(n)} begins:
[2, 17, 71, 368, 1340, 4985, 13733, 59660, 217124, 689516, 2520035, 6594416, 18286118, 72493100, 206416232, 722976884, 2617032608, 8170059617, 25603981622, 93015146708, 256894013555, 832213439720, 2338504300952, 6292517811686, 24650437682951, 71251311202316, 249181919185346, 729594560739527, ...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(subst(A^3, x, x*A' +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(1/x*serreverse(x/A^3 +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A091462 A340971 A326328 * A003715 A247030 A009690
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 05:37 EST 2023. Contains 367575 sequences. (Running on oeis4.)