login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247030
G.f.: 1 = Sum_{n>=0} a(n)*x^n * [ Sum_{k=0..n+1} binomial(n+1, k)^2*(-x)^k ]^3.
1
1, 3, 33, 739, 26826, 1404627, 98887630, 8932402203, 1001208571836, 135804313969750, 21859401699427485, 4110314757616106643, 891280031429868425060, 220472752705231812870426, 61644750354633249317246358, 19327988780537395352731009379, 6748646674845561326467643182776
OFFSET
0,2
COMMENTS
Compare to a g.f. of A006632(n) = 3*binomial(4*n+3,n)/(4*n+3):
1 = Sum_{n>=0} A006632(n)*x^n * [ Sum_{k=0..n+1} binomial(n+1, k)*(-x)^k ]^3.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 33*x^2 + 739*x^3 + 26826*x^4 + 1404627*x^5 +...
such that
1 = 1*(1-x)^3 + 3*x*(1-2^2*x+x^2)^3 + 33*x^2*(1-3^2*x+3^2*x^2-x^3)^3 + 739*x^3*(1-4^2*x+6^2*x^2-4^2*x^3+x^4)^3 + 26826*x^4*(1-5^2*x+10^2*x^2-10^2*x^3+5^2*x^4-x^5)^3 + 1404627*x^5*(1-6^2*x+15^2*x^2-20^2*x^3+15^2*x^4-6^2*x^5+x^6)^3 +...
PROG
(PARI) {a(n)=if(n==0, 1, -polcoeff(sum(m=0, n-1, a(m)*x^m*sum(k=0, m+1, binomial(m+1, k)^2 * (-x)^k )^3 +x*O(x^n)), n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A326328 A233319 A003715 * A009690 A229513 A210833
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2014
STATUS
approved