This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247029 G.f. satisfies: A(x) = A(x)^4 - 9*x. 1
 1, 3, -18, 180, -2187, 29484, -424116, 6377292, -99034650, 1576075644, -25569752274, 421325812440, -7031733125508, 118620405322020, -2019349799669160, 34647126360607440, -598525520999144643, 10401492640172342940, -181721630178565389900, 3189811189331825319492 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..500 FORMULA G.f.: x / Series_Reversion( x*(1 + 9*x)^(1/3) ). Recurrence: (n-2)*(n-1)*n*a(n) = -216*(2*n - 5)*(4*n - 13)*(4*n - 7)*a(n-3). - Vaclav Kotesovec, Nov 18 2017 a(n) ~ -(-1)^n * 2^(8*n/3 - 13/6) * 3^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 18 2017 EXAMPLE G.f.: A(x) = 1 + 3*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +... where A(x)^4 = 1 + 12*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +... MATHEMATICA FullSimplify[Table[-(-1)^n * 3^(2*n-1) * 4^(n-1) * Gamma[n/3 + 1/6] * Gamma[2*n/3 - 1/6] / (Pi * Gamma[n + 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Nov 18 2017 *) PROG (PARI) {a(n)=polcoeff(x/serreverse(x*(1+9*x +x^2*O(x^n))^(1/3)), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A224884. Sequence in context: A231619 A223895 A111465 * A108994 A006472 A132853 Adjacent sequences:  A247026 A247027 A247028 * A247030 A247031 A247032 KEYWORD sign AUTHOR Paul D. Hanna, Sep 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 14:50 EST 2018. Contains 317208 sequences. (Running on oeis4.)