login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247026
Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals.
17
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 12, 256, 1, 1, 1, 3, 19, 100, 3125, 1, 1, 1, 4, 12, 116, 1075, 46656, 1, 1, 1, 3, 21, 73, 985, 13356, 823543, 1, 1, 1, 4, 10, 148, 580, 11026, 197764, 16777216, 1, 1, 1, 3, 21, 44, 1281, 5721, 145621, 3403576, 387420489, 1
OFFSET
0,9
COMMENTS
Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k.
EXAMPLE
A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3).
A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3).
A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4).
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 4, 3, 4, 3, 4, 3, 4, ...
1, 27, 12, 19, 12, 21, 10, 21, ...
1, 256, 100, 116, 73, 148, 44, 148, ...
1, 3125, 1075, 985, 580, 1281, 295, 1305, ...
1, 46656, 13356, 11026, 5721, 12942, 3136, 13806, ...
1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ...
MATHEMATICA
(* This program is not suitable to compute a large number of terms. *)
nmax = 8;
f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)
CROSSREFS
Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058.
Main diagonal gives A247059.
Cf. A247005 (the same for permutations).
Sequence in context: A378819 A332847 A245501 * A193512 A366524 A366523
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 09 2014
STATUS
approved