login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193512
a(n) = Sum of odd divisors of Omega(n), a(1) = 0.
3
0, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 4, 1, 1, 6, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 4, 1, 4, 1, 4, 1, 6, 1, 1, 4, 4, 1, 4, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 4, 1, 1, 4, 1, 1, 4
OFFSET
1,8
COMMENTS
Omega = A001222 is the number of prime divisors of the argument, counted with multiplicity.
a(1) = 0 by convention.
FORMULA
a(1) = 0, for n > 1, a(n) = A000593(A001222(n)).
a(n) + A193511(n) = A290080(n). - Antti Karttunen, Jul 23 2017
EXAMPLE
a(8) = 4 because Omega(8) = 3 and the sum of the 2 odd divisors {1, 3} is 4.
MATHEMATICA
Table[Total[Select[Divisors[PrimeOmega[n]], OddQ[ # ]&]], {n, 58}]
PROG
(PARI)
A000593(n) = sigma(n>>valuation(n, 2)); \\ This function from Charles R Greathouse IV, Sep 09 2014
A193512(n) = if(1==n, 0, A000593(bigomega(n))); \\ Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 29 2011
EXTENSIONS
Description clarified, more terms from Antti Karttunen, Jul 23 2017
STATUS
approved