Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 05 2019 08:58:23
%S 1,1,1,1,1,1,1,1,4,1,1,1,3,27,1,1,1,4,12,256,1,1,1,3,19,100,3125,1,1,
%T 1,4,12,116,1075,46656,1,1,1,3,21,73,985,13356,823543,1,1,1,4,10,148,
%U 580,11026,197764,16777216,1,1,1,3,21,44,1281,5721,145621,3403576,387420489,1
%N Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k.
%e A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3).
%e A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3).
%e A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4).
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 4, 3, 4, 3, 4, 3, 4, ...
%e 1, 27, 12, 19, 12, 21, 10, 21, ...
%e 1, 256, 100, 116, 73, 148, 44, 148, ...
%e 1, 3125, 1075, 985, 580, 1281, 295, 1305, ...
%e 1, 46656, 13356, 11026, 5721, 12942, 3136, 13806, ...
%e 1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ...
%t (* This program is not suitable to compute a large number of terms. *)
%t nmax = 8;
%t f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
%t A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
%t Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, May 05 2019 *)
%Y Columns k=0-10 give: A000012, A000312, A102687, A163859, A163860, A163861, A247053, A247054, A247055, A247056, A247057.
%Y Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058.
%Y Main diagonal gives A247059.
%Y Cf. A247005 (the same for permutations).
%K nonn,tabl
%O 0,9
%A _Alois P. Heinz_, Sep 09 2014