login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245501
Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 4, 3, 4, 3, 4, 3, ...
1, 27, 10, 19, 12, 19, 10, ...
1, 256, 41, 110, 73, 116, 41, ...
1, 3125, 196, 751, 556, 901, 220, ...
1, 46656, 1057, 5902, 4737, 8422, 1921, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
CROSSREFS
Main diagonal gives A245507.
Sequence in context: A010328 A378819 A332847 * A247026 A193512 A366524
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 24 2014
STATUS
approved