OFFSET
0,9
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 4, 3, 4, 3, 4, 3, ...
1, 27, 10, 19, 12, 19, 10, ...
1, 256, 41, 110, 73, 116, 41, ...
1, 3125, 196, 751, 556, 901, 220, ...
1, 46656, 1057, 5902, 4737, 8422, 1921, ...
MAPLE
with(numtheory):
A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 24 2014
STATUS
approved