login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11

%I #20 Feb 24 2019 11:29:51

%S 1,1,1,1,1,1,1,1,4,1,1,1,3,27,1,1,1,4,10,256,1,1,1,3,19,41,3125,1,1,1,

%T 4,12,110,196,46656,1,1,1,3,19,73,751,1057,823543,1,1,1,4,10,116,556,

%U 5902,6322,16777216,1,1,1,3,21,41,901,4737,52165,41393,387420489,1

%N Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A245501/b245501.txt">Antidiagonals n = 0..140, flattened</a>

%F A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 4, 3, 4, 3, 4, 3, ...

%e 1, 27, 10, 19, 12, 19, 10, ...

%e 1, 256, 41, 110, 73, 116, 41, ...

%e 1, 3125, 196, 751, 556, 901, 220, ...

%e 1, 46656, 1057, 5902, 4737, 8422, 1921, ...

%p with(numtheory):

%p A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(

%p exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Mar 20 2017, translated from Maple *)

%Y Column k=0-10 give: A000012, A000312, A000248, A060905, A060906, A060907, A245502, A245503, A245504, A245505, A245506.

%Y Main diagonal gives A245507.

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, Jul 24 2014