login
A003715
Expansion of e.g.f. sin(sin(sin(x))) (odd powers only).
(Formerly M3134)
4
1, -3, 33, -731, 25857, -1311379, 89060065, -7778778091, 849264442881, -113234181108643, 18073465545032353, -3395124358886313595, 740061366713642835201, -185005977382236600650035
OFFSET
0,2
COMMENTS
{abs(a(n))} has e.g.f. sinh(sinh(sinh(x))) (odd powers only). - Jianing Song, Oct 25 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(k) : =sum(j=0..k, (sum(m=j..k, (2^(-2*j-2*m)*(sum(i=0..(2*j+1)/2, (2*i-2*j-1)^(2*m+1)*(-1)^(i)*binomial(2*j+1,i)))*sum(i=0..(2*m+1)/2, (2*i-2*m-1)^(2*k+1)*binomial(2*m+1,i)*(-1)^(k-i)))/(2*m+1)!))/(2*j+1)!); [Vladimir Kruchinin, Jun 10 2011]
MATHEMATICA
With[{nn = 50}, Take[CoefficientList[Series[Sin[Sin[Sin[x]]], {x, 0, nn}], x] Range[0, nn - 1]!, {2, -1, 2}]] (* Vincenzo Librandi, Apr 11 2014 *)
PROG
(Maxima)
a(k):=sum((sum((2^(-2*j-2*m)*(sum((2*i-2*j-1)^(2*m+1)*(-1)^(i)*binomial(2*j+1, i), i, 0, (2*j+1)/2))*sum((2*i-2*m-1)^(2*k+1)*binomial(2*m+1, i)*(-1)^(k-i), i, 0, (2*m+1)/2))/(2*m+1)!, m, j, k))/(2*j+1)!, j, 0, k). /* Vladimir Kruchinin, Jun 10 2011 */
CROSSREFS
Cf. A003712.
Sequence in context: A340971 A326328 A233319 * A247030 A009690 A229513
KEYWORD
sign
STATUS
approved