OFFSET
0,2
COMMENTS
abs(a(n)) has e.g.f. sinh(sinh(x)) (odd powers only).
abs(a(n)) is the number of partitions of the set {1, 2, ..., 2*n-1} into an odd number of blocks, each containing an odd number of elements. - Isabel C. Lugo (izzycat(AT)gmail.com), Aug 23 2004
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 6th line of table.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100 (first 50 terms from T. D. Noe)
FORMULA
a(n) = Sum_{j=1..n+1} (1/(4^(j-1)*(2*j-1)!)) * Sum_{i=0..(2*j-1)/2} (2*i-2*j+1)^(2*n+1) * binomial(2*j-1,i)*(-1)^(n-i-1). - Vladimir Kruchinin, Jun 09 2011
MATHEMATICA
With[{max = 50}, Take[CoefficientList[Series[Sin[Sin[x]], {x, 0, max}], x] Range[0, max - 1]!, {2, -1, 2}]] (* Vincenzo Librandi, Apr 11 2014 *)
Table[Sum[(-1)^(m + n) (1 + 2k - 2m)^(2n + 1)/(4^k (1 + 2k - m)! m!), {k, 0, n}, {m, 0, k + 1/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
PROG
(Maxima)
a(n):=sum((sum((2*i-2*j+1)^(2*n+1)*binomial(2*j-1, i)*(-1)^(n-i-1), i, 0, (2*j-1)/2)/(4^(j-1)*(2*j-1)!)), j, 1, n+1); /* Vladimir Kruchinin, Jun 09 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved