login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214224
E.g.f. satisfies: A(x) = x/(1 - tan(A(x))).
5
1, 2, 12, 128, 1920, 37056, 874496, 24395776, 785387520, 28658483200, 1168842842112, 52692107132928, 2601710674640896, 139635670319366144, 8094064830515773440, 503939620849307353088, 33539757103898142179328, 2376284247629812872511488, 178564437032337539449487360
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) A(x - x*tan(x)) = x.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*tan(x)^n/n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*tan(x)^n/n! ).
a(n) = n*A201594(n-1).
a(n) = (n-1)! * [x^n] x/(1 - tan(x))^n.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! +...
Related expansions:
A(x) = x + x*tan(x) + d/dx x^2*tan(x)^2/2! + d^2/dx^2 x^3*tan(x)^3/3! + d^3/dx^3 x^4*tan(x)^4/4! +...
log(A(x)/x) = tan(x) + d/dx x*tan(x)^2/2! + d^2/dx^2 x^2*tan(x)^3/3! + d^3/dx^3 x^3*tan(x)^4/4! +...
A(x)/x = 1 + x + 4*x^2/2! + 32*x^3/3! + 384*x^4/4! + 6176*x^5/5! + 124928*x^6/6! +...+ A201594(n)*x^n/n! +...
tan(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 152*x^4/4! + 2296*x^5/5! + 44496*x^6/6! + 1052848*x^7/7! + 29425024*x^8/8! +...
MAPLE
f:= b*(1-tan(b))-x:
newt:= unapply(b-normal(f/diff(f, b)), b):
B:= x:
for n from 1 to 5 do
B:= convert(series(newt(B), x, 2^n+1), polynom)
od:
seq(coeff(B, x, j)*j!, j=1..2^5); # Robert Israel, Feb 04 2019
MATHEMATICA
m = 20; CoefficientList[InverseSeries[Series[x(1-Tan[x]), {x, 0, m}], x]/x, x] Range[m]! (* Jean-François Alcover, Apr 01 2019 *)
PROG
(PARI) {a(n)=(n-1)!*polcoeff(x/(1 - tan(x+x*O(x^n)))^n, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(serreverse(x-x*tan(x+x*O(x^n))), n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*tan(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*tan(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 07 2012
STATUS
approved