Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Apr 01 2019 07:22:49
%S 1,2,12,128,1920,37056,874496,24395776,785387520,28658483200,
%T 1168842842112,52692107132928,2601710674640896,139635670319366144,
%U 8094064830515773440,503939620849307353088,33539757103898142179328,2376284247629812872511488,178564437032337539449487360
%N E.g.f. satisfies: A(x) = x/(1 - tan(A(x))).
%H Robert Israel, <a href="/A214224/b214224.txt">Table of n, a(n) for n = 1..362</a>
%F E.g.f. A(x) satisfies:
%F (1) A(x - x*tan(x)) = x.
%F (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*tan(x)^n/n!.
%F (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*tan(x)^n/n! ).
%F a(n) = n*A201594(n-1).
%F a(n) = (n-1)! * [x^n] x/(1 - tan(x))^n.
%e E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! +...
%e Related expansions:
%e A(x) = x + x*tan(x) + d/dx x^2*tan(x)^2/2! + d^2/dx^2 x^3*tan(x)^3/3! + d^3/dx^3 x^4*tan(x)^4/4! +...
%e log(A(x)/x) = tan(x) + d/dx x*tan(x)^2/2! + d^2/dx^2 x^2*tan(x)^3/3! + d^3/dx^3 x^3*tan(x)^4/4! +...
%e A(x)/x = 1 + x + 4*x^2/2! + 32*x^3/3! + 384*x^4/4! + 6176*x^5/5! + 124928*x^6/6! +...+ A201594(n)*x^n/n! +...
%e tan(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 152*x^4/4! + 2296*x^5/5! + 44496*x^6/6! + 1052848*x^7/7! + 29425024*x^8/8! +...
%p f:= b*(1-tan(b))-x:
%p newt:= unapply(b-normal(f/diff(f,b)),b):
%p B:= x:
%p for n from 1 to 5 do
%p B:= convert(series(newt(B),x,2^n+1),polynom)
%p od:
%p seq(coeff(B,x,j)*j!, j=1..2^5); # _Robert Israel_, Feb 04 2019
%t m = 20; CoefficientList[InverseSeries[Series[x(1-Tan[x]), {x, 0, m}], x]/x, x] Range[m]! (* _Jean-François Alcover_, Apr 01 2019 *)
%o (PARI) {a(n)=(n-1)!*polcoeff(x/(1 - tan(x+x*O(x^n)))^n,n)}
%o for(n=1, 25, print1(a(n), ", "))
%o (PARI) {a(n)=n!*polcoeff(serreverse(x-x*tan(x+x*O(x^n))), n)}
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*tan(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
%o {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*tan(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
%Y Cf. A201594, A214222, A214223, A214225.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Jul 07 2012