login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227461
E.g.f. equals the series reversion of x - x*arctanh(x).
1
1, 2, 12, 128, 1920, 37104, 877184, 24520320, 791112960, 28932902400, 1182789053952, 53447706998784, 2645389044480000, 142326283714836480, 8270318699325112320, 516187815998727389184, 34440412737701955502080, 2446191865021002009477120, 184278436717136012676956160
OFFSET
1,2
COMMENTS
Note that arctanh(x) = log((1+x)/(1-x))/2.
FORMULA
E.g.f. A(x) satisfies:
(1) A(x - x*arctanh(x)) = x.
(2) A(x) = x/(1 - arctanh(A(x))).
(3) A(x) = tanh( (A(x)-x)/A(x) ).
(4) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n * arctanh(x)^n / n!.
(5) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1) * arctanh(x)^n / n! ).
a(n) ~ n^(n-1) * s^2 * (1/s^2-1)^(n+1/2) / (exp(n) * sqrt(2)), where s = 0.43415423687337693781... is the root of the equation (1-s^2)*(1-arctanh(s)) = s. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
where A(x) = x/(1 - arctanh(A(x))).
The e.g.f. satisfies:
(4) A(x) = x + x*arctanh(x) + d/dx x^2*arctanh(x)^2/2! + d^2/dx^2 x^3*arctanh(x)^3/3! + d^3/dx^3 x^4*arctanh(x)^4/4! + ...
(5) log(A(x)/x) = arctanh(x) + d/dx x*arctanh(x)^2/2! + d^2/dx^2 x^2*arctanh(x)^3/3! + d^3/dx^3 x^3*arctanh(x)^4/4! + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x*ArcTanh[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x-x*atanh(x +x*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*atanh(x+x*O(x^n))^m/m!)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*atanh(x+x*O(x^n))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A227460.
Sequence in context: A143136 A214224 A214431 * A367374 A367853 A228608
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2013
STATUS
approved