OFFSET
1,2
COMMENTS
Note that arcsinh(x) = log(sqrt(1+x^2) + x).
FORMULA
E.g.f. A(x) satisfies: A(x) = sinh(x*exp(A(x))).
a(n) ~ n^(n-1) * sqrt((1+s^2)/(1+s+s^2)) * (sqrt(1+s^2)/exp(1-s))^n, where s = 0.84184323411403778647... is the root of the equation sqrt(1+s^2)*arcsinh(s) = 1. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 80*x^4/4! + 876*x^5/5! + 12192*x^6/6! + ...
where A( arcsinh(x)/exp(x) ) = x.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[ArcSinh[x] / Exp[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(asinh(X)/exp(X)), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=x); for(i=1, n, A=sinh(x*exp(A+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2013
STATUS
approved