login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227465
E.g.f. equals the series reversion of arctan(x) / exp(x).
3
1, 2, 11, 96, 1141, 17232, 316175, 6831104, 169889641, 4780648960, 150175445331, 5209500696576, 197793228285277, 8158536901294080, 363292669599123287, 17369586234209861632, 887496174440659597009, 48261023190850955378688, 2782898587468279374050715
OFFSET
1,2
FORMULA
E.g.f. A(x) satisfies: A(x) = tan(x*exp(A(x))).
a(n) ~ n^(n-1) * ((1+s^2)/exp(1-s))^n * sqrt(1+s^2)/(1+s), where s = 0.74721195516156756882... is the root of the equation (1+s^2)*arctan(s) = 1. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 96*x^4/4! + 1141*x^5/5! + 17232*x^6/6! + ...
where A( arctan(x)/exp(x) ) = x.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[ArcTan[x] / Exp[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(atan(X)/exp(X)), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=x); for(i=1, n, A=tan(x*exp(A+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A227466.
Sequence in context: A245895 A231229 A138210 * A295099 A227466 A136344
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2013
STATUS
approved