login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214431
E.g.f. satisfies: A(x) = x + arcsin( A(x) )^2.
1
1, 2, 12, 128, 1920, 37088, 876288, 24478848, 789208320, 28841682432, 1178155579392, 53196745543680, 2630883967315968, 141432764970270720, 8211780541909352448, 512119065654535618560, 34141138126195739394048, 2422954554718763388764160, 182378340941780059828518912
OFFSET
1,2
COMMENTS
Radius of convergence of A(x) is r = A(r) - (1-A(r)^2)/4 = 0.232465575..., where A(r) = 0.435130859... satisfies A(r) = sin(sqrt(1-A(r)^2)/2).
FORMULA
E.g.f. satisfies:
(1) A(x) = Series_Reversion( x - arcsin(x)^2 ).
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) arcsin(x)^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (arcsin(x)^(2*n)/x) / n! ).
(4) A'(x) = sqrt(1-A(x)^2) / (sqrt(1-A(x)^2) - 2*arcsin(A(x))).
a(n) ~ sqrt((1-s^2)/(2+s)) * n^(n-1) / (exp(n) * r^(n-1/2)), where r and s=A(r) were described above. - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...
where
arcsin(A(x)) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2109*x^5/5! + 40838*x^6/6! + 966393*x^7/7! + ...
arcsin(A(x))^2 = 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + 37088*x^6/6! + 876288*x^7/7! + ...
Related expansions:
A(x) = x + arcsin(x)^2 + d/dx arcsin(x)^4/2! + d^2/dx^2 arcsin(x)^6/3! + d^3/dx^3 arcsin(x)^8/4! + ...
log(A(x)/x) = arcsin(x)^2/x + d/dx (arcsin(x)^4/x)/2! + d^2/dx^2 (arcsin(x)^6/x)/3! + d^3/dx^3 (arcsin(x)^8/x)/4! + ...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - ArcSin[x]^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(x-asin(x+x*O(x^n))^2), n)}
(PARI) {a(n)=local(A=x); for(i=0, n, A=x + asin(A+x*O(x^n))^2); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, asin(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, asin(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A003712 A143136 A214224 * A227461 A367374 A367853
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 17 2012
STATUS
approved