login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201594
E.g.f. satisfies: A(x) = 1/(1 - tan( x*A(x) )).
3
1, 1, 4, 32, 384, 6176, 124928, 3049472, 87265280, 2865848320, 106258440192, 4391008927744, 200131590356992, 9973976451383296, 539604322034384896, 31496226303081709568, 1972926888464596598784, 132015791534989604028416, 9398128264859870497341440, 709248762402156849800413184
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies: A( x*(1-tan(x)) ) = 1/(1-tan(x)).
E.g.f.: (1/x)*Series_Reversion( x*(1-tan(x)) ).
a(n) = [x^n/n!] 1/(1 - tan(x))^(n+1) / (n+1).
a(n) = A214224(n+1)/(n+1).
a(n) ~ n^(n-1) * ((t^2+1)/(t-1)^2)^(n+1/2) / (sqrt(2*(t+1)) * exp(n)), where t = 0.46733877379062994365... is the root of the equation t = tan((1-t)/(1+t^2)). - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 32*x^3/3! + 384*x^4/4! + 6176*x^5/5! +...
The coefficients in the initial powers of G(x) = 1/(1 - tan(x)) begin:
G^1: [(1), 1, 2, 8, 40, 256, 1952, 17408, ..., A000828(n), ...];
G^2: [1,(2), 6, 28, 168, 1232, 10656, 106048, ...];
G^3: [1, 3,(12), 66, 456, 3768, 36192, 395616, ...];
G^4: [1, 4, 20,(128), 1000, 9184, 96800, 1150208, ...];
G^5: [1, 5, 30, 220,(1920), 19400, 222480, 2852320, ...];
G^6: [1, 6, 42, 348, 3360,(37056), 459312, 6317088, ...];
G^7: [1, 7, 56, 518, 5488, 65632, (874496), 12841808, ...];
G^8: [1, 8, 72, 736, 8496, 109568, 1562112, (24395776), ...]; ...
where coefficients in parenthesis form initial terms of this sequence:
[1/1, 2/2, 12/3, 128/4, 1920/5, 37056/6, 874496/7, 24395776/8, ...].
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[x*(1-Tan[x]), {x, 0, 21}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/x*serreverse(x-x*tan(x+x^2*O(x^n))), n)}
(PARI) {a(n)=n!*polcoeff(1/(1-tan(x+x*O(x^n)))^(n+1)/(n+1), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 02 2011
STATUS
approved