login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201591 Decimal expansion of least x satisfying 6*x^2 = csc(x) and 0 < x < Pi. 3
5, 6, 0, 1, 0, 0, 6, 9, 4, 9, 1, 2, 1, 6, 0, 7, 6, 2, 8, 2, 3, 8, 4, 1, 3, 3, 3, 7, 9, 7, 8, 1, 2, 0, 7, 7, 5, 2, 9, 3, 7, 4, 5, 0, 3, 0, 3, 0, 8, 9, 6, 4, 1, 1, 5, 5, 8, 6, 1, 2, 2, 0, 4, 3, 0, 9, 0, 6, 7, 5, 9, 1, 6, 2, 1, 5, 6, 4, 8, 3, 3, 1, 4, 0, 8, 0, 7, 1, 6, 1, 7, 3, 2, 2, 0, 2, 3, 8, 9, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least:  0.56010069491216076282384133379781207752937450...

greatest:  3.12451991250138769396880196501162499414487...

MATHEMATICA

a = 6; c = 0;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

RealDigits[r]   (* A201591 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]

RealDigits[r]   (* A201653 *)

PROG

(PARI) a=6; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

CROSSREFS

Cf. A201564.

Sequence in context: A110800 A021645 A031364 * A100220 A011440 A242055

Adjacent sequences:  A201588 A201589 A201590 * A201592 A201593 A201594

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 03 2011

EXTENSIONS

Terms a(90) onward corrected by G. C. Greubel, Aug 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 10:12 EDT 2019. Contains 324375 sequences. (Running on oeis4.)