Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 12 2014 11:17:05
%S 1,1,4,32,384,6176,124928,3049472,87265280,2865848320,106258440192,
%T 4391008927744,200131590356992,9973976451383296,539604322034384896,
%U 31496226303081709568,1972926888464596598784,132015791534989604028416,9398128264859870497341440,709248762402156849800413184
%N E.g.f. satisfies: A(x) = 1/(1 - tan( x*A(x) )).
%F E.g.f. A(x) satisfies: A( x*(1-tan(x)) ) = 1/(1-tan(x)).
%F E.g.f.: (1/x)*Series_Reversion( x*(1-tan(x)) ).
%F a(n) = [x^n/n!] 1/(1 - tan(x))^(n+1) / (n+1).
%F a(n) = A214224(n+1)/(n+1).
%F a(n) ~ n^(n-1) * ((t^2+1)/(t-1)^2)^(n+1/2) / (sqrt(2*(t+1)) * exp(n)), where t = 0.46733877379062994365... is the root of the equation t = tan((1-t)/(1+t^2)). - _Vaclav Kotesovec_, Jan 12 2014
%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 32*x^3/3! + 384*x^4/4! + 6176*x^5/5! +...
%e The coefficients in the initial powers of G(x) = 1/(1 - tan(x)) begin:
%e G^1: [(1), 1, 2, 8, 40, 256, 1952, 17408, ..., A000828(n), ...];
%e G^2: [1,(2), 6, 28, 168, 1232, 10656, 106048, ...];
%e G^3: [1, 3,(12), 66, 456, 3768, 36192, 395616, ...];
%e G^4: [1, 4, 20,(128), 1000, 9184, 96800, 1150208, ...];
%e G^5: [1, 5, 30, 220,(1920), 19400, 222480, 2852320, ...];
%e G^6: [1, 6, 42, 348, 3360,(37056), 459312, 6317088, ...];
%e G^7: [1, 7, 56, 518, 5488, 65632, (874496), 12841808, ...];
%e G^8: [1, 8, 72, 736, 8496, 109568, 1562112, (24395776), ...]; ...
%e where coefficients in parenthesis form initial terms of this sequence:
%e [1/1, 2/2, 12/3, 128/4, 1920/5, 37056/6, 874496/7, 24395776/8, ...].
%t CoefficientList[1/x*InverseSeries[Series[x*(1-Tan[x]), {x, 0, 21}], x],x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jan 12 2014 *)
%o (PARI) {a(n)=n!*polcoeff(1/x*serreverse(x-x*tan(x+x^2*O(x^n))),n)}
%o (PARI) {a(n)=n!*polcoeff(1/(1-tan(x+x*O(x^n)))^(n+1)/(n+1), n)}
%Y Cf. A214224, A201595, A201128, A000828.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 02 2011