The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201596 Record (maximal) gaps between prime triples (p, p+4, p+6). 11
 6, 24, 30, 90, 150, 156, 210, 240, 306, 366, 384, 444, 810, 834, 1086, 1200, 1326, 2316, 3876, 4230, 4350, 8244, 8880, 9450, 10686, 10950, 11784, 12816, 13554, 15504, 15576, 16254, 16506, 16596, 19446, 19944, 21516, 38340, 39990, 41556, 45786, 47190, 48246, 59856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Prime triples (p, p+4, p+6) are one of the two types of densest permissible constellations of 3 primes (A022004 and A022005). By the Hardy-Littlewood k-tuple conjecture, average gaps between prime k-tuples are O(log^k(p)), with k=3 for triples. If a gap is larger than any preceding gap, we call it a maximal gap, or a record gap. Maximal gaps may be significantly larger than average gaps; this sequence suggests that maximal gaps between triples are O(log^4(p)). A201597 lists initial primes p in triples (p, p+4, p+6) preceding the maximal gaps. A233435 lists the corresponding primes p at the end of the maximal gaps. LINKS Alexei Kourbatov, Table of n, a(n) for n = 1..79 G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, pp. 1-70, 1923. Alexei Kourbatov, Maximal gaps between prime k-tuples A. Kourbatov, Maximal gaps between prime k-tuples: a statistical approach, arXiv preprint arXiv:1301.2242 [math.NT], 2013 and J. Int. Seq. 16 (2013) #13.5.2 Alexei Kourbatov, Tables of record gaps between prime constellations, arXiv preprint arXiv:1309.4053 [math.NT], 2013. Alexei Kourbatov, The distribution of maximal prime gaps in Cramer's probabilistic model of primes, arXiv preprint arXiv:1401.6959 [math.NT], 2014. Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019. Norman Luhn, Record Gaps Between Prime Triplets. Eric W. Weisstein, k-Tuple Conjecture FORMULA Gaps between prime triples (p, p+4, p+6) are smaller than 0.35*(log p)^4, where p is the prime at the end of the gap. There is no rigorous proof of this formula. The O(log^4(p)) growth rate is suggested by numerical data and heuristics based on probability considerations. EXAMPLE The gap of 6 between triples starting at p=7 and p=13 is the very first gap, so a(1)=6. The gap of 24 between triples starting at p=13 and p=37 is a maximal gap - larger than any preceding gap; therefore a(2)=24. The gap of 30 between triples at p=37 and p=67 is again a maximal gap, so a(3)=30. The next gap is smaller, so it does not contribute to the sequence. MATHEMATICA DeleteDuplicates[Differences[Select[Partition[Prime[Range[5*10^6]], 3, 1], Differences[#]=={4, 2}&][[;; , 1]]], GreaterEqual] (* Harvey P. Dale, Feb 26 2023 *) CROSSREFS Cf. A022005 (prime triples p, p+4, p+6), A113274, A113404, A200503, A201598, A201062, A201073, A201051, A201251, A202281, A202361, A201597, A233435. Sequence in context: A348714 A209452 A275302 * A128459 A229292 A147826 Adjacent sequences: A201593 A201594 A201595 * A201597 A201598 A201599 KEYWORD nonn AUTHOR Alexei Kourbatov, Dec 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)