OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..100
FORMULA
a(n) = Sum_{k=1..n} ((-1)^(k-1)+1)/(2^k*k!) * ( Sum_{i=0..k} (-1)^i*(k-2*i)^n *binomial(k,i) ) * ( Sum_{j=1..k} j! * 2^(k-j-1) * (-1)^((k+1)/2+j) * stirling2(k,j) ). - Vladimir Kruchinin, Apr 20 2011
a(n) ~ 4 * (2*n+1)! / (sqrt(4+Pi^2) * (log((Pi + sqrt(4+Pi^2))/2))^(2*n+2)). - Vaclav Kotesovec, Feb 16 2015
MATHEMATICA
Tan[ Sinh[ x ] ] (* Odd Part *)
nn = 20; Table[(CoefficientList[Series[Tan[Sinh[x]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
PROG
(Maxima)
a(n):=sum(((-1)^(k-1)+1)/(2^k*k!)*sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k)*(sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k, j), j, 1, k)), k, 1, n); /* Vladimir Kruchinin, Apr 20 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved